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1 Littlewood-Paley Projections and Khinchine’s Inequality

1.1 Bernstein properties of Littlewood-Paley projections

Last time, we were proving properties of Littlewood-Paley projections.
Theorem 1.1.
1 fally + 1< llp S 1 Fllp wniformly in N and for 1 < p < .
2. |fn@)| + | fan ()] S M f ().
3. For f € LP with 1 < p < 00, we have f E > nNeoz IN-
4. (Bernstein’s inequality) For 1 < p < q < oo,
Ifnllg S NP9 fullp
1 f<nllg S NYP=44)| fenllp.
5. (Bernstein) For 1 <p <oo and s € R,
VI fllp ~ N[l
In particular, for s >0 and 1 < p < o0,
VI f<nllp S N2 f<nllp-

[f>nlly S NTIVE SNl

We proved properties (1) to (3) last time.



Proof. Here is 4: We have fy = f * N%)V(N -), so by Young’s inequality,

1Fllg S 151 - 1N (N g
S et tfamyp

S NP £,

To recover fy on the RHS, we use a common trick. Let D(E) = Y(26) + p(€) + v(E/2),
YN (&) = ¥(E/N), and define the fattened Llttlewood-Paley projection

Puf(©) = F(&) - in (©).
Note that ]SNPn = P, since {/; =1 on supp ¢p. Write
fn = Pnf = fax [NV (N )]

and argue as before. The same argument gives |f<nl|l; < N¥P~49| f<yll,. (We use
PeunPen = P<n)
Here is 5: Note that

VI* i = [(2rlE) on ()] = £
N [(”;V’f‘)sws/fv»]v “f

Let
X(©) = (2rl¢)*(€) € CERIN{0}),  xw(&) = x(&/N).
Then |V[*fx = N*[NIV(N )] % f. So

IV E Nl S NIl IN D (V)]
—_———
=[xVl
S N Ay

Using the fattened Littlewood-Paley projection Py, we get

VI fNllp S N2 fnllp-
On the other hand,
[ fnlle = VI IVE falle S NV Nl

Finally, for s > 0,

IV fenlly S 32 NIVIfally

M<N
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S > Ml

M<N
= Sl

S NS lp-
For high frequencies,

sl S > Ifarlly
M>N
SN MV el

M>N SIIV1 £l
S NIV Fp- O

1.2 Khinchine’s inequality

Lemma 1.1 (Khinchine’s inequality). Let {X;,}n>1 be independent, identically distributed
random variables with X,, = £1 with equal probability. Let {c,}n>1 C C and 0 < p < oo.

Then
pq1/p

E chXn ~p /Z|cn]2.
n>1 n>1

One way to think about this is that a random variable’s “size” is given by its variance.
For p =2,

2

E || enXa| | =EI(X enXn) (3 emXm))
_ Z lenP E[X2] + Z enCm B XX
nm
= Z |Cn’2-

So this basically says that this orthogonality persists, even in an LP sense.

0

Proof. Without loss of generality, we may assume ¢, € R.

p

E||Y X :p/OOOApIP’(‘ZCan

n>1

S

By Chebyshev,

P(Z e X, > A) < e ME[etSenXn]
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—e™ME

H etchn]

n

=M H E[ctenXn)

n
Cn

Y etC" + e_t
= € | I —_—m
2
n

=e M H cosh(tcy,)

Use that coshz < e*/2,
_ efAt HetQC%/Q
n
— e MH?/2(3 )
Choose t such that At =123 c2;s0t = A/ c2. We get
P (Z cnXp > )\) < e~ N2 eR),
The same argument gives

P (Z enXn < _)\) < ef)\t E[efthan] < 67)\2/(220%)_

So we have

p

o
B[S e | =r [ vE([Cex,
n>1 0

< dx
< / we /e D
0

S

Make the change of variables 8 = \//>_ 2.

For the other inequality, for 1 < p < oo,

S lea? =E UZC"X”

|
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Y

p':| 1/p’

<E HZCan

p} 1/p E UZ o X,
SV lenl?

which gives us
p11/p
VY asE[[Yax|]

For 0 < p <1, we use Cauchy-Schwarz instead:

Z ‘CTL’z =E _ chXn 2:|
=E - Z cnXnp o2 ‘Z cnXnp, 2p/2]
SE[Y ex, p] g UZ e H] ”

S(Z ‘Cn|2)1/2<1/2<(47p)

So we get that
1/2

(Zlen)" 52 [[ e

Now raise both sides to the power 2/p. O

1.3 Littlewood-Paley square function estimate

Theorem 1.2 (Littlewood-Paley square function estimate). Let f € S(RY) and define the

square function
S = /> 1wl

ISl ~p I Fllp - V1 <p < o0

Proof. Let’s prove ||Sf|p Sp | fllp- Let {Xn},ecoz be iid random variables with X, = +1
with equal probability. Let

Then

mx(€) = Y Xnvn(€).
Ne2z
Note that
my * f = Z Xnfn.
Ne2Z
We claim that mx is a Mikhlin multiplier uniformly in the choice of X .

IDgmx (&) < Y NDgy|(¢/N)

Ne2Z
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Since 1 has compact support on R\ {0}, only finitely many N contribute to the sum.
S € 0
We will finish the proof next time.

Remark 1.1. We could replace ¢ by any C2°(R?\ {0}) and still get a Mikhlin multiplier.
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